반응형

Deep learning 6

[Object Detection(객체 검출)] YOLO v1 : You Only Look Once

지난시간에 Object Detection 이란 무엇인지 간단히 알아보고, 주요 용어들에 대해 알아보았다. 2022.03.31 - [AI/Object Detection] - Object Detection이란? Object Detection 용어정리 Object Detection이란? Object Detection 용어정리 Object Detection이란? Object Detection은 말 그대로 물체를 검출하는 문제이다. 딥러닝으로 이미지 관련 무언가를 한다면 대체로 다음과 같다. 1. Classification 가장 기본이 되는 문제이다. 이미지가 주어 leedakyeong.tistory.com 이번에는 Object Detection을 하기 위한 딥러닝 알고리즘들 중 2-Stage 방식과 1-Stag..

AI/Object Detection 2022.04.04

Deep Learning for Time Series Forecasting (kaggle 코드 리뷰)

2021.05.24 - [통계 지식/시계열자료 분석] - 시계열 분해란?(Time Series Decomposition) :: 시계열 분석이란? 시계열 데이터란? 추세(Trend), 순환(Cycle), 계절성(Seasonal), 불규칙 요소(Random, Residual) 시계열 분해란?(Time Series Decomposition) :: 시계열 분석이란? 시계열 데이터란? 추세(Trend), 순환(Cycle), 시계열 데이터란? 시간에 순차적으로 관측한 값들의 집합이며, 예측 모델에서 시간을 변수로 사용하는 특징이 있다. 시계열 데이터 분석이란? 과거 데이터의 패턴을 분석하여 미래의 값을 예측 leedakyeong.tistory.com 2021.05.24 - [통계 지식/시계열자료 분석] - ARIM..

[밑바닥부터 시작하는 딥러닝] 퍼셉트론이란? (What is perceptron?)

>> 퍼셉트론으로 논리회로 구현하기 바로가기 퍼셉트론(perceptron)이란? 퍼셉트론은 신경만(딥러닝)의 기원이 되되는 알고리즘으로 매우 중요한 알고리즘이다. 퍼셉트론은 다수의 신호를 입력으로 받아 하나의 신호를 출력한다.즉, 하나 이상의 값들을 input으로 받아 어떠한 계산 후 output으로 출력한다.퍼셉트론 신호는 1 or 0의 두 가지 값을 가질 수 있다. 신호가 흐르면 1, 흐르지 않으면 0이라 생각하면 편하다. 예를 들어, input이 2개인 perceptron은 다음과 같다. x1과 x2는 입력 신호, y는 출력 신호, w1과 w2는 가중치를 의미한다. (w : weight) 입력 신호와 출력 신호를 담고있는 원은 노드 혹은 뉴런이라 부른다.입력 신호가 뉴런에 보내질 때는 각각 고유한 ..

[논문] GAN 리뷰 : Generative Adversarial Nets

Generative Adversarial Nets 논문 링크 : https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf Abstract 우리는 적대적인(adversarial) 과정을 통해 생성모델을 평가하는 새 프레임워크를 제안한다. 생성 모델 G : 데이터의 분포를 학습하는 모델감별 모델 D : 생성모델 G로부터가 아닌, 훈련 데이터로 부터 나왔을 확률을 추정하는 감별 모델G 모델 훈련 과정은 D가 실수할 확률을 최대화 하는 것이다.이 프레임워크는 minimax 2인 게임이다.임의의 함수 G와 D의 공간에서, G는 훈련 데이터의 분포를 복구하고, D는 항상 1/2이 되는 고유한 솔루션이 존재한다.즉, G는 훈련 데이터의 분포를 학습하여, 임..

AI/논문 2019.02.22

[논문] ADGAN 리뷰 : ANOMALY DETECTION WITH GENERATIVE ADVERSARIAL NETWORKS

ANOMALY DETECTION WITH GENERATIVE ADVERSARIAL NETWORK(ADGAN)ICLR 2018 논문 링크 : https://openreview.net/forum?id=S1EfylZ0Z Abstract low-dimensional problems에서는 좋은 anomaly detection 방법들이 존재하지만, 이미지와 같은 high-dimensional problem에는 효과적인 방법이 없다.본 논문에서 GAN을 이용한 anomaly detection에 대한 새로운 접근을 제안한다.우리의 방법은 고려중인 sample을 감안할 때, generator의 latent space안에서 good representation을 검색하는 것에 기반한다.만약, representation이 발..

AI/논문 2018.12.04

[논문] DEC 리뷰 : Unsupervised Deep Embedding for Clustering Analysis

Unsupervised Deep Embedding for Clustering Analysis(DEC) arXiv : 24 May 2016 논문 링크 : https://arxiv.org/pdf/1511.06335.pdf 깃 링크 : https://github.com/piiswrong/dec 1. Introduction - 데이터 분석과 visualization에서 핵심인 Clustering은 각기 다른 관점에서 unsupervised machine learning으로 널리 연구되어 왔다. * What defines a cluster? * What is the right distance metric? * How to efficiently group instances into cluster? * How to ..

AI/논문 2018.09.19
반응형