반응형

분해법 2

[Python] 날씨 시계열 데이터(Kaggle)로 ARIMA 적용하기

2021.05.24 - [통계 지식/시계열자료 분석] - 시계열 분해란?(Time Series Decomposition) :: 시계열 분석이란? 시계열 데이터란? 추세(Trend), 순환(Cycle), 계절성(Seasonal), 불규칙 요소(Random, Residual) 시계열 분해란?(Time Series Decomposition) :: 시계열 분석이란? 시계열 데이터란? 추세(Trend), 순환(Cycle), 시계열 데이터란? 시간에 순차적으로 관측한 값들의 집합이며, 예측 모델에서 시간을 변수로 사용하는 특징이 있다. 시계열 데이터 분석이란? 과거 데이터의 패턴을 분석하여 미래의 값을 예측 leedakyeong.tistory.com 2021.05.24 - [통계 지식/시계열자료 분석] - ARIM..

시계열 분해란?(Time Series Decomposition) :: 시계열 분석이란? 시계열 데이터란? 추세(Trend), 순환(Cycle), 계절성(Seasonal), 불규칙 요소(Random, Residual)

시계열 데이터란? 시간에 순차적으로 관측한 값들의 집합이며, 예측 모델에서 시간을 변수로 사용하는 특징이 있다. 시계열 데이터 분석이란? 과거 데이터의 패턴을 분석하여 미래의 값을 예측하는 방법으로, 과거의 패턴이 미래에도 지속된다는 데이터의 안정성이 기본적인 가정으로 필요하다. 시계열 분해법이란? What is Time Series Decomposition? 시계열 데이터를 추세/순환/계절/불규칙 요소로 분해하는 기법이다. 추세(Trend)란? 데이터가 장기적으로 증가하거나 감소하는 것이며, 추세가 꼭 선형적일 필요는 없다. 순환(Cycle)이란? 경기변동과 같이 정치, 경제, 사회적 요인에 의한 변화로, 일정 주기가 없으며 장기적인 변화 현상이다. 계절성(Seasoanl)이란? 주, 월, 분기, 반기..

반응형