반응형

loss 2

[Object Detection] YOLO v5, v6 Loss

지난시간에 Loss를 계산하기 위해 각 Grid 별로 Ground Truth를 정규화하는 과정을 알아보았다. 2022.08.04 - [AI/Object Detection] - [Object Detection] YOLOv5, YOLOv6 Loss 구하는 과정 중 build_targets() 이해하기 [Object Detection] YOLOv5, YOLOv6 Loss 구하는 과정 중 build_targets() 이해하기 YOLOv5와 YOLOv6는 같은 개발자가 개발한 버전으로, 두 버전 모두 여기에 구현되어 있다. 두 버전 모두 loss는 계산하는 과정은 같은데, loss를 계산하기 위해 label을 각 Grid에 맞게 build하는 과정을 파 leedakyeong.tistory.com 이제 그 결과와 ..

AI/Object Detection 2022.08.10

[Object Detection] YOLOv5, YOLOv6 Loss 구하는 과정 중 build_targets() 이해하기

YOLOv5와 YOLOv6는 같은 개발자가 개발한 버전으로, 두 버전 모두 여기에 구현되어 있다. 두 버전 모두 loss는 계산하는 과정은 같은데, loss를 계산하기 위해 label을 각 Grid에 맞게 build하는 과정을 파해쳐보려한다. YOLO v1 포스팅에 자세히 설명한 것 처럼 Ground Truth의 Center point가 위치하는 Grid를 표시하여 이로 Obj Loss를 구하고, GT의 Width, Height를 Grid에 맞게 Normalization 한걸로 Box Loss를 구한다. build_targets()는 이를 구현하는 과정이다. 이를 이해하려면 YOLO는 1. grid를 나누어 각 grid별로 classification과 BBox Regression을 하고, 따라서 각 gr..

AI/Object Detection 2022.08.04
반응형