반응형

모평균비교 2

[기초통계] 모평균 비교 :: 독립인 모집단에서 표본의 크기가 작을 때 (2) :: t.test() in R

독립인 두 모집단에서 표본의 크기가 작을 때 모평균의 차 (\(\mu_{1} - \mu_{2}\)) 비교 표본의 크기가 작을 때는 일반적으로 두 모집단에 대하여 정규분포 가정이 필요하다. 또 다른 가정은 ① 두 모집단의 표준편차가 같다고 가정하는 경우와 ② 두 모집단의 표준편차가 다르다고 가정하는 경우이다. 이전 포스팅에서 독립인 두 모집단에서 표본의 크기가 작을 때, 모표준편차가 같은 경우에 대한 모평균 비교 방법에 대해 알아보았다. 이번에는 모표준편차가 다를 때 모평균 비교 검정 방법에 대해 알아보겠다. >> 독립인 두 모집단에서 표본의 크기가 작을 때 바로가기 2. 두 모집단의 표준편차가 다른 경우 * 독립인 두 모집단에서 표본의 크기가 작고 두 모표준편차가 다를 때, 모평균의 차 (\(\mu_{1..

AI/기초통계 2019.11.27

[기초통계] 모평균 비교 :: 독립인 모집단에서 표본의 크기가 작을 때 (1) :: t.test() in R

이전에 독립인 두 모집단에서 표본의 크기가 클 때 모평균 비교 검정하는 방법에 대해 알아보았다. 이번에는 표본의 크기가 작을 때 모평균 비교 검정하는 방법을 알아보겠다. >> 독립인 두 모집단에서 표본의 크기가 클 때 바로가기 독립인 두 모집단에서 표본의 크기가 작을 때 모평균의 차 (\(\mu_{1} - \mu_{2}\)) 비교 표본의 크기가 작을 때는 일반적으로 두 모집단에 대하여 정규분포 가정이 필요하다. 또 다른 가정은 ① 두 모집단의 표준편차가 같다고 가정하는 경우와 ② 두 모집단의 표준편차가 다르다고 가정하는 경우이다. 1. 두 모집단의 표준편차가 같다고 가정하는 경우 두 모집단의 표준편차가 같은지(\(\sigma_{1} = \sigma_{2}\)) 판단하기 위해 표본표준편차를 이용한다. 두 ..

AI/기초통계 2019.11.26
반응형